
www.manaraa.com

Nonlinear Dynamics16: 203–221, 1998.
© 1998Kluwer Academic Publishers. Printed in the Netherlands.

Construction of Dynamically Equivalent Time-Invariant Forms
for Time-Periodic Systems

S. C. SINHA, E. A. BUTCHER, and A. DÁVID
Nonlinear Systems Research Laboratory, Department of Mechanical Engineering, Auburn University,
Auburn, AL 36849, U.S.A.

(Received: 23 September 1997; accepted: 3 March 1998)

Abstract. In this study dynamically equivalent time-invariant forms are obtained for linear and non-linear systems
with periodically varying coefficients via Lyapunov–Floquet (L–F) transformation. These forms are equivalent
in the sense that the local stability and bifurcation characteristics are identical for both systems in the entire
parameter space. It is well known that the L–F transformation converts a linear periodic first order system into a
time-invariant one. In the first part of this study a set of linear second order periodic equations is converted into an
equivalent set of time-independent second order equations through a sequence of linear transformations. Then the
transformations are applied to a time-periodic quadratic Hamiltonian to obtain its equivalent time-invariant form.
In the second part, time-invariant forms of nonlinear equations are studied. The application of L–F transformation
to a quasi-linear periodic equation converts the linear part to a time-invariant form and leaves the non-linear part
with time-periodic coefficients. Dynamically equivalent time-invariant forms are obtained via time-periodic center
manifold reduction and time-dependent normal form theory. Such forms are constructed for general hyperbolic
systems and for some simple critical cases, including that of one zero eigenvalue and a purely imaginary pair. As
a physical example of these techniques, a single and a double inverted pendulum subjected to periodic parametric
excitation are considered. The results thus obtained are verified by numerical simulation.
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1. Introduction

Mathematical modeling of many engineering systems results in linear or nonlinear non-
autonomous differential equations whose coefficients are explicit periodic functions of time.
Equations of this kind also arise from stability and bifurcation analysis of a given periodic
motion of an arbitrary nonlinear system. The study of stability and bifurcation phenomena
is an essential first step in the design of stable and controllable systems and structures. Such
analyses as well as controller design are well developed for autonomous systems. Therefore,
the idea of constructing dynamically equivalent time-invariant forms of time-periodic equa-
tions is of significant importance. According to the Floquet Theory, there exists a periodic
transformation known as the Lyapunov–Floquet (L–F) transformation which converts a qua-
silinear time-periodic equation into an equivalent one with a time-invariant linear part. The
resulting dynamically similar system in the transformed space is amenable to the application
of the time dependent center manifold reduction and normal form theory, which are powerful
tools in the stability and bifurcation analysis of nonlinear time-dependent systems.

Traditionally, the quantitative behavior of periodic systems has been studied using numer-
ical, perturbation, averaging and point mapping methods [1]. For periodic systems, it is very
difficult to obtain a general structure of the dynamics through a purely numerical algorithm.
Averaging and perturbation methods also have their limitations of application due to the fact
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that they can only be applied to systems in which the periodic coefficients can be expressed
in terms of a small parameter. Therefore, an analysis based on these methods is restricted to a
rather small part of the parameter space of the system. Averaging methods are widely used to
obtain time-invariant forms, but during the application of these techniques the time-periodic
linear part of the equation itself is averaged out, and therefore the stability and bifurcation
characteristics of the original equation, in general, are not preserved. Further, these procedures
are computationally not suitable for large systems. The so-called point mapping technique
is an alternate method of analysis. In this approach the continuous time-periodic system is
reformulated as discrete time events by defining a point mapping called the Poincaré map.
The original nonautonomous differential system is replaced by a set of autonomous difference
equations. However, the construction of the set of difference equations requires the knowledge
of either the exact or an approximate solution of the original problem. Another limitation of
such a procedure is that the system dynamics cannot be transformed to the original state. There
are also problems with computation as the system dimension becomes larger.

In this paper, time-invariant forms of periodic linear and nonlinear systems are constructed
by utilizing the L–F transformation. Unlike the traditional perturbation and averaging meth-
ods, the results are valid in the entire parameter space. In the case of time-periodic quadratic
Hamiltonian, it is shown how this transformation may be employed to obtain its equivalent
time-invariant form. In case of nonlinear equations, the method of time-dependent center
manifold reduction and time-dependent normal form theory are used to obtain time-invariant
forms in the general hyperbolic case as well as for some simple critical cases including that
of one zero eigenvalue and a purely imaginary pair. To illustrate the approach, a single and
a double inverted pendulum subjected to periodic parametric excitation are considered. The
results are compared with numerical simulations.

2. Linear Systems

2.1. MATHEMATICAL BACKGROUND

Consider the linear system

ẋ(t) = A(t)x(t), (1)

whereA(t + T ) = A(t) is ann × n state space matrix andx(t) is ann vector. It has been
shown by Sinha and Wu [2] and Sinha et al. [3] that the state transition matrix (STM)8(t) for
this system can be computed in terms of shifted Chebyshev polynomials. The STM8(t) can
be factored as

8(t) = L (t)ect , (2)

whereL (t) is theT -periodic complex Lyapunov–Floquet (L–F) transformation matrix andC
is a complex constant matrix in general. The Floquet transition matrix (FTM)8(T ) is defined
as the STM evaluated at the end of one period as

8(T ) = ect , (3)

sinceL (0) = L (T ) = I , then × n identity matrix. By performing an eigen-analysis on the
FTM, C can be computed easily. Then the complex L–F transformation matrix is given by

L (t) = 8(t)e−ct . (4)
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Using

8(2T ) = 82(T ) = ect ec∗t = e2Rt (5)

a 2T -periodic real L–F transformation matrixQ(T ) can also be computed as

Q(T ) = 8(T )e−Rt , 0≤ t ≤ T, (6)

Q(T + τ) = 8(τ)Q(T )e−Rτ , 0≤ τ ≤ T, (7)

whereR is also a real matrix. The inverse of the L–F transformation can be computed by
finding the STM9(t) of the adjoint system

ẇ(t) = −AT w(t) (8)

and using the relationship [4]

8−1(t) = 9T (t). (9)

Then theT -periodic L–F transformation is

L−1(t) = ec8−1(t). (10)

The 2T -periodic matrix,Q−1(t) can be computed similarly. To guarantee reliable system
dynamics, one must compute these transformations with a high degree of accuracy. It has
been shown by Sinha and Wu [2] that a 15 to 18 term Chebyshev polynomial representation
provides very accurate approximation for most two-degree-of-freedom systems. Since the L–F
transformation matrix is periodic (withT or 2T ), its elements are represented in Fourier series.
Usually, only a few terms are needed because the convergence is quite good. A convergence
study has been reported by Joseph et al. [4]. For commutative systems it is possible to obtain
the L–F transformation matrix in a closed form. The details can be found in Lukes [5].

2.2. TIME-INVARIANT FORMS OFLINEAR PERIODIC FIRST ORDER SYSTEMS

Consider

ẋ(t) = A(t)x+ f(t), (11)

whereA(t) is aT -periodic matrix andf(t) is an arbitrary vector. Applying theT -periodic L–F
transformation

x(t) = L (t)z(t), (12)

Equation (11) becomes

ż= Cz(t)+ L−1(t)f(t), (13)

whereC, in general, is a complex constant matrix. Application of the real L–F transformation

x(t) = Q(t)z(t) (14)

results in

ż(t) = Rz(t)+Q−1(t)f(t), (15)
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whereR is a real constant matrix. In both cases the homogeneous part of the original time-
periodic system has been transformed into a dynamically equivalent time-invariant one. In this
study the real L–F transformation,Q(t) will be used.

2.3. TIME-INVARIANT FORMS OFSECOND ORDER LINEAR PERIODIC SYSTEMS

Consider the nonhomogeneous multidimensional second-order linear system

M(t)ẍ+ (C(t)+G(t))ẍ+ (K(t)+ N(t))x = f(t), (16)

wherex is an n vector, M(t) is a symmetric mass matrix,C(t) = CT (t) is a symmetric
damping matrix,G(t) = −GT (t) is an antisymmetric gyroscopic matrix,K(t) = KT (t)

is a symmetric stiffness matrix andN(t) = −NT (t) is an antisymmetric non-conservative
stiffness matrix. All matrices aren × n and periodic with periodT . The state-space form of
Equation (16) is{

ẏ1

ẏ2

}
=

[
0 I

M−1(t)(K(t)+ N(t)) M−1(t)(C(t)+G(t))

] {
y1

y2

}
+

{
0

f(t)

}
, (17)

where{y1, y2}T = {xi , ẋi}T , i = 1, . . . , n andI is then × n identity matrix. Application of
the 2T -periodic L–F transformation,Q(t) to Equation (17) yields

ż= Rz+ g(t), (18)

where

g(t) =
{

g1(t)

g2(t)

}
= Q(t)−1

{
0

f(t)

}
, R =

[
R11 R12

R21 R22

]
(19)

andRij , i, j = 1, 2, are the partitioned matrices ofR. If the system if not critical (i.e. matrix
R does not have zero eigenvalues), then submatrixR11 is invertible. Assuming that submatrix
R12 is invertible, Equation (19) is transformed further through

v = Ỹz, Ỹ =
[

Y 0
I I

]
, (20)

whereY is chosen to beY = −R−1
11 R12. Applying this transformation to Equation (18) and

using (19) yields

v̇ =
[

0 M−1
0

−K0 −D

]
v+ ĝ(t), (21)

whereM0 = −R−1
12 R−1

11 R12, K0 = R21R
−1
11 R12− R22, D = −R−1

12 R11R12− R22, andĝ(t) =
Ỹ−1g(t). Yet another transformation

v =
{

u
M0(u̇− ĝ1(t))

}
(22)

transforms Equation (21) back to the following second order form

M0ü+ C0u̇+ K0u = ḡ(t), (23)
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Figure 1. Double inverted pendulum with a periodic follower force.

whereC0 = DM0 andḡ(t) = M0ĝ1(t)+C0ĝ1(t)+ ĝ2(t). Thus the second order time-periodic
Equation (16) has been transformed into an equivalent second order time-invariant equation
which is now suitable for various well-known methods of modal control or response analysis.

2.3.1. Application: Two-Dimensional Linear Second Order Equation
As an example, consider the linearized equations of a double inverted pendulum subjected to
a time-periodic follower force (Figure 1) given by[

3 1
1 1

] {
8̈1

8̈2

}
+

[
B1+ B2 −B2

−B2 B2

] {
8̇1

8̇2

}

+
[

k̄(2− p̄) −k̄(1− γ p̄)

−k̄ k̄(1− p̄(1− γ ))

] {
81

82

}
, (24)

where{81 82}T is the displacement angle vector. With{x1, x2, x3, x4} = {81,82, 8̇1, 8̇2}
Equation (24) becomes

ẋ1

ẋ2

ẋ3

ẋ4

 =


0 0 1 0
0 0 0 1

0.5k̄(p̄ − 3) 0.5k̄(2− p̄) −0.5(B1 + 2B2) B2

0.5k̄(5− p̄) k̄[p̄(1.5− γ )− 2] 0.5(B1+ 4B2) −2B2




x1

x2

x3

x4

 . (25)
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For the parameter setk̄ = k/ml2 = 1, γ = 1, P̄ = P l/k = 1+ 0.7 cosωt andω = 2, where
k is the stiffness,l is the length of the links andγ (0≤ γ ≤ 1) is the load direction parameter;
the homogeneous system is stable. The Floquet multipliers of the system (0.2670± 0.9418i

and−0.1791±0.9501i) have absolute values within the unit circle in the complex plane. The
2T -periodic L–F transformation was computed using the Chebyshev polynomial approach as
suggested by Sinha et al. [3] and by applying the transformation to Equation (25), the real
constant matrixR was computed as

R =


0.0018 −0.0991 −0.0107 0.4089
−0.2178 −0.0451 −0.9197 0.4322
−2.1665 2.1167 −0.1239 −0.0723
−4.0948 −0.0905 −0.1933 0.0572

 . (26)

Following the approach described in Section 1.3, the equivalent time-invariant second order
equation is given by[

1 0
0 1

]
ü+

[
0.0408 −0.0032
0.0421 0.0692

]
u̇+

[
1.6901 0.0147
0.2044 1.9041

]
u =

{
0
0

}
. (27)

It is observed that the eigenvalues of matrixR given by Equation (26) and the eigenvalues
of the second order system represented by Equation (27) are identical, namely−0.0213±
1.2945 i and−0.0337± 1.3845 i. Since all the eigenvalues lie in the left half plane, the
transformed system is asymptotically stable and the dynamics of the original system are
preserved.

2.4. TIME-INVARIANT FORMS OFLINEAR HAMILTONIAN SYSTEMS

Consider ann-degree-of-freedom quadratic time-periodic Hamiltonian of the form

H̃ (x, t) = H̃ (x, t + T ) = 1

2
xTS̃(t)x, (28)

where the 2n × 2n symmetric matrixS̃(t) is T -periodic and the 2n × 1 phase space vector
x = {xT

1 xT
2 }T = {q1 . . . qnp1 . . . pn}T contains the generalized coordinates and momenta. It

is desired to transformH̃ (x, t) to an equivalent time-invariant form. For this purpose, the
canonical equations of motion are constructed in standard symplectic form:

ẋ = A(t)x = JS̃(t)x, (29)

where

J =
[

0 In

−I n 0

]
, (30)

is the standard 2n × 2n symplectic coefficient matrix and the 2n × 2n matrix A(t) is Hamil-
tonian (i.e., AT (t)J + JA(t) = 0). For Hamiltonian systems, the L–F transformation is
canonical; that is, it preserves the form of the Hamiltonian in the symplectic basis [6]. This
aspect of the L–F transformation is important since it implies that8(t), L (t) or Q(t), and
exp(Ct) or exp(Rt) are allsymplectic(i.e. ZT JZ = J for a symplecticZ) and that the result-
ing constant system matrixC or R is also Hamiltonian so that the equivalent time-invariant
quadratic Hamiltonian may be constructed.
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When the problem is originally formulated as a system ofn linear second order differ-
ential equations of the form of Equation (16) in whichC(t) = N(t) = 0, the time-periodic
Hamiltonian can be constructed by finding a first order Hamiltonian system matrix. Although
the state space system matrix in Equation (17) satisfies tr(A(t)) = 0 and phase space vol-
ume is preserved, the matrix is not Hamiltonian for more than one-degree-of-freedom unless
M(t) = αIn and G(t) = 0 whereα is an arbitrary scalar. For the case of constant mass
and gyroscopic matrices (such that onlyK(t) is periodic), however, one may use the alternate
transformation [6]{

v
Mv̇

}
=

[
I n 0
−1

2G In

]{
x1

x2

}
. (31)

Then the first order system has the form of Equation (29) where

A(t) =
[ −0.5M−1G M−1

−K(t)+ 0.25GM−1G −0.5GM−1

]
, (32a)

S̃(t) =
[

K(t)− 0.25GM−1G 0.5GM−1

−0.5M−1G M−1

]
, (32b)

and the 2n×2n time-periodic system matrixA(t) is Hamiltonian for arbitrary dimension such
that the time-periodic quadratic HamiltoniañH(x, t) is found from Equation (28). Application
of the L–F transformation to Equation (29) yields

ż= Rz= JSz, (33)

where the constantR matrix is Hamiltonian and matrixS is symmetric. The equivalent time-
invariant quadratic Hamiltonian is then found directly as

H(z) = 1

2
zTSz. (34)

On the other hand, if Equation (17) (where the system matrix isnot Hamiltonian) is trans-
formed for a Hamiltonian system, then the resultingR andS matrices are not Hamiltonian
and symmetric, respectively (although tr(R) = 0), and Equation (31) is not applicable. An
equivalent time-invariant Hamiltonian might still be found, however, via the transformations
given by Equations (20–22) to the equivalent time-invariant second order system [7].

2.4.1. Application: Linear Hamiltonian System
Consider a time-periodic Hamiltonian system of the form

v̈+
[

0 −0.01
0.01 0

]
v̇+

[
1.0− 0.35 cos(2t) −0.5+ 0.35 cos(2t)

−0.5+ 0.35 cos(2t) 1.5− 0.35 cos(2t)

]
v = 0. (35)

After converting to state-space form (Equation (17)), application of the 2T -periodic L–F
transformation results in Equation (33), where

R =


−0.0068 0.0176 −0.0019 −0.2607
−0.0121 0.0072 −0.2607 0.1649

0.5826 1.7828 −0.0014 0.0172
1.7828 −1.9690 −0.0176 0.0010

 , (36)
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S=


−0.5826 −1.7828 0.0014 −0.0172
−1.7828 1.9690 0.0176 −0.0010
−0.0068 0.0176 −0.0019 −0.2607
−0.0121 0.0072 −0.2607 0.1649

 , (37)

and the eigenvalues ofR are±0.5601i and±0.9706i. Although tr(R) = 0 and phase space
volume is preserved,R is not Hamiltonian since

RTJ+ JR =


0 1.29× 10−5 −8.19× 10−3 5.18× 10−3

−1.29× 10−5 0 6.06× 10−5 8.19× 10−3

8.19× 10−3 −6.06× 10−5 0 5.57× 10−9

−5.18× 10−3 −8.19× 10−3 −5.57× 10−9 0

 6= 0, (38)

and theS matrix is obviously not symmetric. Despite this, however, Pandiyan et al. [7] still
found an equivalent time-invariant Hamiltonian for the same case by performing simultaneous
diagonalizations on theM0 andK0 matrices in the time-invariant second order form (cf., Equa-
tion (23)) while forcingC0 to be gyroscopic. Then they employed the inverse transformations
using Equations (31) and (32) to transform it back to the first order form. In contrast, appli-
cation of the alternate transformation in Equation (31) followed by the L–F transformation
results in Equation (33) where

R =


−0.0027 0.0177 −0.0019 −0.2607
−0.0146 0.0031 −0.2607 0.1650

0.5825 1.7827 0.0027 0.0146
1.7827 −0.9690 −0.0177 −0.0031

 , (39)

S=


−0.5825 −1.7827 −0.0027 −0.0146
−1.7827 1.9690 0.0177 0.0031
−0.0027 0.0177 −0.0019 −0.2607
−0.0146 0.0031 −0.2607 0.1650

 , (40)

RT J + JR = O(10−7) and tr(R) = 0. The eigenvalues ofR are once again±0.5601 i

and±0.9706 i, and the equivalent time-invariant Hamiltonian is found directly from Equa-
tion (34). Although the resulting Hamiltonian is not in normal form, the normal form may be
obtained asH = 0.2801(q2

1 + p2
1)+ 0.4853(q2

1 + p2
1) via another symplectic transformation

[8]. It should also be noted that time-periodic quadratic Hamiltonians perturbed by a (possibly
time-periodic) nonintegrable perturbation may also be transformed to an equivalent time-
invariant form via the L–F transformation and subsequent application of the time-dependent
canonical perturbation theory as demonstrated in [9].

3. Non-Linear Systems

3.1. CENTER MANIFOLD REDUCTION

Consider the quasi-linear time-periodic system
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ẋ = A(t)x+ f2(x, t) + · · · + fk(x, t), (41)

whereA(t) = A(t + T ) is ann× n matrix andfi (x, t) are vector monomials inx of orderi
and areT -periodic in time. If the linear part of the system is critical (i.e., some of its Floquet
multipliers are on the unit circle and the linearized stability does not guarantee the stability
of the nonlinear problem), then the dynamics of the equation can be studied on the center
manifold. In the following a theorem due to Malkin [10] has been utilized to obtain the center
manifold relations for time-periodic systems. After the application of the 2T -periodic L–F
transformation, Equation (41) can be written in its Jordan canonical form

ẏ = J̃y+ w2(y, t) + w3(y, t)+ · · · + wk(y, t)+O(|y|k+1, t), (42)

where the functionswi(y, t) are monomials of the degreei (i = 2, . . . , k). Let us assume that
matrix J̃ in Equation (42) hasn1 critical eigenvalues andn2 eigenvalues that have negative
real parts. Then the equation can be partitioned as{

ẏc

ẏs

}
=

[
Jc O
O Js

] {
yc

ys

}
+

{
wc2

ws2

}
+ · · · +

{
wck

wsk

}
, (43)

where the subscriptsc ands represent the critical and stable vectors, respectively. According
to the center manifold theorem there exists a relation [13]

ys = g(yc, t), (44)

such thatg(yc, t) is of the form

g(yc, t) =
∑

B
(m1...mn1)
s (t)y

m1
1 . . . y

mn1
n1 , m1+ · · · +mn1 ≥ 1, (45)

whereB
(m1...mn1)

s (t) are periodic coefficients with period 2T . Substituting Equation (45) into
Equation (43), the center manifold relation can be obtained as a formal solution of the equation

∂g
∂t
+

n1∑
i=1

∂g
∂yc

(Jcyc +Wc) = Jsys +Ws , (46)

whereWc = wc2+ · · ·+wck andWs = ws2+ · · ·+wsk are the nonlinear vector polynomials
of the critical and stable states, respectively. Substitution of Equation (45) into Equation (43)
clearly decouples the stable and critical states, and therefore, the problem reduces to the sta-
bility investigation of ann1 dimensional system in the center manifold. The resulting system
of n1 periodic equations is of the form

ẏc = Jcyc +W∗c , (47)

where the vectorW∗c , the nonlinear polynomial is a function ofyc only.

3.2. TIME-DEPENDENT NORMAL FORM REDUCTION

Due to the fact that the matrixA(t) in Equation (41) is time-periodic, a direct application of
normal form theory is not possible. By using the L–F transformation we can make the linear
part of the equation time-independent, therefore amenable to direct application of the method
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of time-dependent normal forms for equations with periodic coefficients as shown by Arnold
[11]. Using the transformation

x(t) = Q(t)z(t), (48)

Equation (41) becomes

ż= Rz+Q−1(t)(f2(z, t)+ f3(z, t))+ · · · + fk(z, t))+O(|x|k+1, t), (49)

whereR is a constantn× n real matrix. Equation (49) can be written in its Jordan canonical
form

ẏ = J̃y+ w2(y, t) + w3(y, t)+ · · · + wk(y, t)+O(|y|k+1, t), (50)

whereJ̃ is the Jordan canonical matrix ofR, andwi(y, t), i = 2, 3, . . . k are 2T -periodic func-
tions containing homogeneous monomials ofy of order i. According to the time-dependent
normal form theory we can use a near-identity transformation of the form

y = v+ hr(v, t), (51)

wherehr(v, t) is a formal power series inv of degreer with unknown periodic coefficients
with period 2T . After the transformation, if we neglect all terms that are of higher order then
k, we get

v̇ = J̃v− [Dvhr)J̃v− J̃hr + ∂hr/∂t] + wr(v, t) +O(|v|r+1, t), (52)

whereDvhr = ∂hr/∂v. From Equation (52) the nonlinear terms of orderr can be eliminated
if

(Dvhr)J̃v− J̃hr + ∂hr/∂t = wr (v, t), (53)

the so called homological equation, is satisfied. Due to the time-periodic nature of Equa-
tions (50) and (51), the functionswr(y, t) and the unknown nonlinear transformationhr(v, t)

can be expressed in finite Fourier form as

wr (v, t) =
∑

m

n∑
j=1

q∑
ν=−q

aa,j,νe
iν�tvmej , (54)

hr (v, t) =
∑

m

n∑
j=1

q∑
ν=−q

hm,j,νe
iν�tvmej , (55)

where m = (m1, . . . ,mn), 6mi = r, i = √−1, ν = an integer,� = π/T , ym =
y

m1
1 y

m2
2 . . . ymn

n , andej is the j th member of the natural basis. A term by term comparison
of the Fourier coefficients provides the solvability condition as

hmjν = amjν

iν�+m ·3− λj

, (56)

where3 = (λ1, . . . , λn) are the eigenvalues of the Jordan matrixJ̃. It is obvious that when

(iν�+m ·3− λj) 6= 0, ∀ν, (57)
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Equation (52) can be reduced to the linear form. Otherwise the corresponding resonant terms
will remain and the equation takes its simplest nonlinear form

v̇ = J̃v+
k∑

r=2

wr(v, t)+O(|v|k+1, t) (58)

which often can be time invariant as shown in the following section.

3.3. TIME-INVARIANT FORMS OFNONLINEAR TIME-PERIODIC SYSTEMS

3.3.1. Non-Critical Cases
As shown earlier, the time-periodic equation (41) can be transformed to Equation (49). If all
the eigenvalues of matrixR have negative and/or positive real parts (hyperbolic cases), the
stability is determined by the linear part. Then clearly the resonance condition of the normal
form reduction

(iν�+m ·3− λj) = 0 (59)

cannot be satisfied for anyj = 1, . . . , n andν = −q, . . . , q. Therefore, the equation in the
transformed space can be reduced to the linear part via near-identity transformations, which
is already time-invariant due to the application of L–F transformation.

3.3.2. Critical Cases

(i) Zero eigenvalues with independent eigenvectors
Let us assume that in Equation (50) matrixJ̃ hasn1 zero eigenvalues andn2 eigenvalues with
negative real parts. Then the equation can be reduced to then1 dimensional system of the form

ẏc = wc2(yc, t)+ · · · + wck(yc, t) (60)

in the center manifold as discussed earlier. The resonance condition (59) reduces to

iν� = 0, (61)

where� 6= 0, and therefore,ν = 0. This corresponds to the constant terms in the Fourier
expansions of the functionswc2(yc, t), . . . , wck(yc, t). Therefore, the resulting normal form
will be a time-independent equation of the form

v̇c = wc2(vc)+ · · · + wck(vc), (62)

wherewc2(vc), . . . , wck(vc) are monomials ofvc of the same form as in Equation (60) but
with constant coefficients. For a critical case where there aren1 zero eigenvalues which do not
haven1 independent eigenvectors one can also obtain a time-invariant normal form, where the
structure of the nonlinear terms is the same as in Equation (62). This result is not reported here.

(ii) A pair of purely imaginary eigenvalues
For this case matrix̃J in Equation (50) hasn− 2 eigenvalues with negative real parts and one
pair of purely imaginary eigenvalues. Then the reduced – two-dimensional – equation in the
center manifold has the following Jordan canonical form:{

ẏc1

ẏc2

}
=

[
iω 0
0 −iω

]{
yc1

yc2

}
+

{
wc12(yc, t)+ · · · +wc1k(yc, t)

wc22(yc, t)+ · · · +wc2k(yc, t)

}
. (63)
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The resonance conditions to eliminate therth order nonlinear terms are

m1ωi −m2ωi − ωi = ν�i for j = 1,

m1ωi −m2ωi + ωi = ν�i for j = 2,

m1+m2 = r ≥ 2, (64)

where� = π/T . If ω/� 6= p/q, wherep andq are relative prime integers, which is the case
generally, then the only possible way to get resonant monomials is when

m1−m2− 1= 0,

m1−m2+ 1= 0, (65)

andν = 0, corresponding to the constant terms of the Fourier expansions. The resonant terms
in this case are of the form{

v̇1

v̇2

}
=

[
ωi 0
0 −ωi

] {
v1

v2

}
+

{
c1v

2
1v2+ · · · + c1v

l+1
1 v1

2

c̄1v1v
2
2 + · · · + c̄1v

1
1v

l+1
2

}
, (66)

where 2l + 1 = r, andci andc̄i are pairs of complex conjugate constants. Hence the normal
form of Equation (49) in case of a pair of purely imaginary eigenvalues is time-independent.
However, in some special casesω/� = p/q may be satisfied [12] and we get additional
resonant terms with time-periodic coefficients from the following conditions.

m1−m2− 1= ±q, for j = 1,

m1−m2+ 1= ±q, for j = 2, 2≤ r ≤ q, (67)

and thenν = ±q,m1 +m2 = r ≥ 2. Then the resulting time-periodic normal form is{
v̇1

v̇2

}
=

[
ωi 0
0 −ωi

] {
v1

v2

}
+

{
c1v

2
1v2+ · · · + c1v

l+1
1 v1

2 + d1e
qωit v

q−1
2

c̄1v1v
2
2 + · · · + c̄1v

1
1v

l+1
2 + d̄1e

−qωit v
q−1
1

}
. (68)

The above argument can easily be extended for the case of more than one pair of purely
imaginary eigenvalues. In the case of more than one pair of purely imaginary eigenvalues,
additional resonance conditions occur from the internal resonances between the frequencies.
Those cases are not discussed here.

3.4. APPLICATIONS

3.4.1. One Zero Eigenvalue
As an example, a parametrically excited simple pendulum shown in Figure 2 is considered.
The dimensionless equation of motion for the system is given as

θ̈ + 2ξαθ̇(α2+ β sin 2t) sinθ = 0, (69)

whereα = 2ωn/ω, β = 4A/L, ω2
n = g/L, c/(ML)2 = 2ζωn, 2t = ωt̄ . Denotingx1 = θ ,

x2 = θ̇ and expanding sinθ in a Taylor series about the bottom equilibrium position, the above
equation may be rewritten in state space form as{

ẋ1

ẋ2

}
=

[
0 1

−(a + 2b sin 2t) −d

]{
x1

x2

}
+ {

(a + 2b sin 2t)x3
1/6+ h.o.t.

}
, (70)



www.manaraa.com

Time-Invariant Forms for Time-Periodic Systems215

Figure 2. Periodically excited simple pendulum.

whereα2 = a, −β = 2b, 2ξα = d. For the parameter seta = 0.25943745,b = 0.75,
d = 0.31623 andω = 2, one of the Floquet multipliers of the linear system is−0.99999992
(≈ −1, flip bifurcation), which corresponds to a zero eigenvalue ofJ̃ matrix in the transformed
domain. After applying the L–F and modal transformations, the system equations take the
form

{
ẏ1

ẏ2

}
=

[
0 0
0 −0.99347

] {
y1

y2

}
+


∑

m

fq(t)y
m1
1 y

m2
2∑

m

gq(t)y
m1
1 y

m2
2

 ,

2∑
i=1

mi = 3, (71)

wherefq(t) and gq(t) are complex 2T -periodic coefficients expressed inq term Fourier
series. The elements of L–F transformation matrix are shown in Appendix A. Since one of
the eigenvalues of Equation (71) is zero, and the other one is stable, the dimension of the
system can be reduced to one in the center manifold. The computed center manifold relations
are also given in Appendix A. After the center manifold reduction, the time-dependent normal
form theory can be applied in order to further simplify the equation. It has been shown in
Section 3.3. that for this case the normal form is time-invariant, and is given by

v̇1 = −0.04665v3
1 . (72)

Therefore, the system is asymptotically stable at the critical point. Using numerical integration
one can easily verify this result. Also, Equation (72) can be solved in a closed form, and
the solution can be transformed back to the original domain by back substitution of all the
transformations in the correct order, viz., first the near-identity transformation of the normal
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Figure 3a. Comparison of solutions of the simple pendulum problem, flip bifurcation:a = 0.25943745,b = 0.75,
d = 0.31623,ω = 2, in time interval [0, 8] showing the transient motion. Poincaré points (sampled at periodT )
are also shown.

Figure 3b. Magnification from Figure 3a, not showing state-space trajectory, only the Poincaré map. For the
simple pendulum problem, flip bifurcation:a = 0.25943745,b = 0.75,d = 0.31623,ω = 2, sampled at 2T .

form reduction, then the center manifold relation, and finally the modal and the L–F transfor-
mations. This solution (called theanalytical solution) can be compared with the one obtained
numerically using a fifth or six order scheme. It can be seen in Figure 3a that the two solutions
are strikingly close (after the transient period), showing that the time-invariant normal form
is indeed dynamically equivalent. Figure 3a shows the solutions for only two periods. To see
the long term behavior of the system, a Poincaré map was constructed for both the numerical
and the approximate solutions. The results are shown in both Figures 3a and 3b (Figure 3b is a
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magnified view of the upper right corner of Figure 3a, not showing the state-space trajectory,
only the Poincaré points, as they approach zero), and it can be clearly seen that the motion is
bounded, and is, in fact, asymptotically stable, although the points first move away from the
origin (transient part), but after some time they turn back and slowly go to zero (Figure 3b).
The two Poincaré points (Figure 3a) also indicate the period doubling phenomenon of the flip
bifurcation.

3.4.2. One Pair of Purely Imaginary Eigenvalues
We consider the nonlinear equations of the double inverted pendulum subjected to a periodic
load (Figure 1). The nonlinear equations in state-space form are [13]

ẋ1

ẋ2

ẋ3

ẋ4

 =


0 0 1 0
0 0 0 1

0.5k̄(p̄ − 3) 0.5k̄(2− p̄) −0.5(b1 + 2b2) b2

0.5k̄(5− p̄) k̄(p̄(1.5− γ )− 2) −0.5(b1 + 4b2) −2b2




x1

x2

x3

x4

 (73)

+



0
0

[−0.5(x2
3 + x2

4)(x1− x2)− (p̄k̄)[(x1 − γ x2)
3− (1− γ )3x3

2]/12

− 0.25(x1 − x2)
2[k̄(p̄ − 4)x1+ k̄(3+ p̄(γ − 2))x2 − (b1+ 3b2)x3+ 3b2x4]]

[0.5(x1 − x2)(3x2
3 + x2

4)+ p̄k̄[(x1− γ x2)
3− 3(1− γ )3x3

2]/12

+ 0.25(x1 − x2)
2[k̄(2p̄ − 7)x1 + k̄(5+ p̄(γ − 3))x2 − (2b1 + 5b2)x3+ 5b2x4]]


,

where {x1 x2 x3 x4} = {φ1 φ2 φ̇1 φ̇2} and the definitions of the system parameters
are the same as in Section 1.4. For the parameter setk̄ = k/ml2 = 1, b1 = b2 = 0.01,
p1 = −3.2570215,p2 = 2, p̄ = p1 + p2 cosωt , ω = 2 andγ = 0, the linear system matrix
of Equation (73) has a pair of complex Floquet multipliers with magnitude 1 (−0.97308±
0.23048i, magnitude= 0.99999997, secondary Hopf bifurcation). This corresponds to a
pair of purely imaginary eigenvalues in the transformed domain. Application of the real L–F
transformation yields the following equation in Jordan canonical form:

ẏ1

ẏ2

ẏ3

ẏ4

 =


0.23258i 0 0 0
0 −0.23258i 0 0
0 0 −5.49778+ 0.15243i 0
0 0 0 −5.49778− 0.15243i




y1

y2

y3

y4



+



∑
m

aq(t)y
m1
1 y

m2
2 y

m3
3 y

m4
4∑

m

bq(t)y
m1
1 y

m2
2 y

m3
3 y

m4
4∑

m

cq(t)y
m1
1 y

m2
2 y

m3
3 y

m4
4∑

m

dq(t)y
m1
1 y

m2
2 y

m3
3 y

m4
4


,

4∑
i=1

mi = 3, (74)

whereaq(t), bq(t), cq(t), anddq(t) are complex 2T -periodic coefficients. Since two eigen-
values have zero real parts the center manifold is two dimensional. The frequency of the
critical eigenvaluesω = 0.23258 is not an integral multiple ofπ , therefore, the condition
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Figure 4. Comparison of solutions of the double pendulum problem, secondary Hopf bifurcation:
p̄1 = −3.2570215,p̄2 = 1.

ω/� 6= p/q (see Section 3.3) holds and the equations in the center manifold can be converted
to a time-invariant form by applying the normal form theory. These are given by{

v̇1

v̇2

}
=

[
0.23258i 0

0 −0.23258i

] {
v1

v2

}
+

{
(−0.36032+ 0.08883i)v2

1v2

(−0.36032− 0.08883i)v1v
2
2

}
. (75)

The equilibrium point of Equation (75) is found to be a center; therefore, the behavior of the
original system is quasi-periodic and bounded. Also, Equation (75) can be solved in closed
form [13], and after transforming the solution back to the original domain, it can be compared
to the solution obtained via numerical integration. Comparisons of solutions for the two pairs
of positions and velocities are shown in Figures 4a and 4b. The two solutions are shown
for a time intervalt ∈ [48, 50], not showing the transient part of the motion, because it is
expected that the normal form equation cannot duplicate the transient solution. To show the
long term behavior, Poincaré maps of the same two pairs of states are computed and shown
in Figures 5a and 5b. These figures clearly show the quasi-periodic nature of the motion.
The Poincaré maps of the approximate and the numerical solutions are very close, indicating
that the time-invariant normal form of the system is dynamically equivalent to the original
time-dependent equation.

4. Discussion and Conclusions

In this paper, some general methods for constructing dynamically equivalent time-invariant
forms of linear and nonlinear systems with periodic coefficients are presented. These methods
are based on the application of the well-known L–F transformation and simplification tech-
niques such ascenter manifold reductionand time-dependentnormal form theory. It is shown
that a set of linear second order equations with periodic coefficients can be transformed to an
equivalent set of time invariant second order equations through an application of a sequence
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Figure 5. Poincaŕe maps for the double pendulum problem, secondary Hopf bifurcation:p̄1 = −3.2570215,
p̄2 = 1.

of transformations. The idea has also been extended to transform a time-periodic quadratic
Hamiltonian to a time-invariant Hamiltonian.

In the case of nonlinear time-periodic systems, the application of L–F transformation
yields a similar dynamical system in which the linear part is time-invariant. The stability
and bifurcation characteristics are completely preserved in the entire parameter space since
no restrictions are imposed on the size of the system parameters. For the hyperbolic cases the
nonlinear equations can be reduced to linear equations which are time-invariant. In the event
when the linearized stability is critical, it is still possible to reduce the time-periodic system
equations to time-invariant forms using the center manifold reduction and normal form theory
for non-resonant situations. Illustrative examples are included to demonstrate the effectiveness
of these methods. It is shown that the simplified autonomous dynamical equations can be
integrated in a closed form and the steady-state dynamics compares extremely well with the
numerical solutions.

Time-invariant forms of periodic linear and nonlinear equations have been traditionally
obtained by averaging methods. However, these techniques destroy the influence of linear
periodic terms by averaging them out. This leads to incorrect prediction of critical values of
parameters for instability and bifurcation conditions. Application of averaging method would
yield the same result as the normal form theory if the averaging process is applied to the
transformed systems, i.e., after the L–F transformation has been used [15].

It is anticipated that the proposed techniques would provide useful tools in the simplifica-
tion of linear and nonlinear time-periodic systems. Since the analysis and control techniques
for time-invariant systems are well-developed, it would now be possible to use these methods
for time-periodic systems.
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Appendix A

The L–F transformation for the simple pendulum problem in a Fourier expansion form,
truncated at the order of 10−5:

Q11 = 0.91013 Cos(πt)+ 0.09382 Cos(3πt)− 0.00390 Cos(5πt)

− 0.00006 Cos(7πt)− 0.71102 Sin(πt)+ 0.11033 Sin(3πt)

+ 0.00341 Sin(5πt)− 0.00007 Sin(7t)+ · · · ,
Q12 = 0.04712 Cos(πt)− 0.04746 Cos(3πt)+ 0.00031 Cos(5πt)

+ 0.00003 Cos(7πt)+ 0.46415 Sin(πt)

− 0.00506 Sin(3πt)− 0.00157 Sin(5πt)+ · · · ,
Q21 = −0.89701 Cos(πt)+ 0.84725 Cos(3πt)+ 0.05114 Cos(5πt)

− 0.00136 Cos(7πt)− 0.73969 Sin(πt)− 0.79022 Sin(3πt)

+ 0.05527 Sin(5πt)+ 0.00125 Sin(7πt)+ · · · ,
Q22 = 1.00624 Cos(πt)+ 0.01742 Cos(3πt)− 0.02378 Cos(5πt)

+ 0.00011 Cos(7πt)− 0.86462 Sin(πt)+ 0.41547 Sin(3πt)

− 0.00291 Sin(5πt)− 0.00055 Sin(7πt)+ · · · .
Center manifold relation for the simple pendulum problem:

y2 = {0.04968− (0.00631− 0.00232i)/Eˆ(2πit)− (0.00631+ 0.00232i)Eˆ(2iπt)

− (0.00103+ 0.00177i)/Eˆ(4iπt)− (0.00103− 0.00177i)Eˆ(4iπt)

+ (0.00036− 0.00035i)/Eˆ(6iπt)+ (0.00036+ 0.00035i)Eˆ(6iπt)

+ (0.00007+ 0.00005i)/Eˆ(8iπt)+ (0.00007− 0.00005i)Eˆ(8iπt)+ · · ·}y3
1.
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